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Abstract— Human brain mapping or neuroimaging plays a
pivotal role in understanding the intricacies of the human brain
and paving the way for potential therapeutic interventions.
Studying the standard brain networks, typically obtained from
fMRI, provide valuable insights into the fundamental
organization of the human brain. In this work we present a
workflow for processing electroencephalography (EEG) signals
to determine the correlations of the phase-amplitude coupling
(PAC) of the standard brain networks during a given time-
window. We validate this pipeline with synthetic signals on
realistic head models of two subjects with the ultimate goal of
studying the changes of these networks during different sleep
stages. The proposed workflow consists of: mapping the signals
to the source space, averaging per Brodmann Area (BA), low
and high pass filtering, computing the modulation index per
low-high frequency pair, generating surrogate data to obtain
significance thresholds, obtaining the significant PAC signals,
computing the signal and noise covariance matrices, removing
the model bias, and applying confirmatory factor analysis
(CFA) to determine the relevance of each standard brain
network. We included the novelty of using CFA instead of
principal component analysis as done in previous studies. We
tested the workflow with synthetic signals, and it performed as
expected. Next steps will be fine-tuning it and improving its
robustness before processing real signals during sleep that we
already have collected for the two subjects of the head models
used here.

Keywords—brain networks, phase amplitude coupling,
confirmatory factor analysis, electroencephalography inverse
problem.

I. INTRODUCTION

Human brain mapping or neuroimaging plays a pivotal
role in understanding the intricacies of the human brain and
unlocking its mysteries. The motivation behind this field
stems from the fundamental desire to comprehend the
complex processes underlying cognition, perception, emotion,
and behavior, thereby advancing our knowledge of human
nature and paving the way for potential therapeutic
interventions. With the synergic use of modalities such as
functional magnetic resonance imaging (fMRI) or diffusion
tensor imaging (DTI), researchers can identify brain regions
involved in memory, attention, language, and decision-
making. For example, a study used fMRI to investigate the
neural mechanisms underlying episodic memory retrieval,
shedding light on the interplay between different brain regions
during this process [1]. In another study, diffusion tensor
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imaging (DTI) was employed to reveal disrupted white matter
connectivity in patients with schizophrenia, offering insights
into the underlying neural pathology [2].

Studying the standard brain networks, such as the default
mode network (DMN), the attention networks or the
somatomotor network (SMN) (also known as central
executive network), holds immense relevance and motivation
in the field of neuroscience. These networks, typically
obtained from fMRI, provide valuable insights into the
fundamental organization of the human brain and are crucial
for understanding various cognitive processes and their
dysregulation in neurological and psychiatric disorders.
Recent findings have shed light on the impact of the standard
brain networks, on sleep and its associated processes. These
networks play crucial roles in regulating sleep architecture,
sleep-related cognitive processes, and sleep disorders.
Research has shown that the activity and connectivity within
the DMN are altered during different stages of sleep, including
rapid eye movement (REM) sleep and non-rapid eye
movement (NREM) sleep. For instance, a study demonstrated
increased DMN connectivity during REM sleep, suggesting a
potential role in dream generation and self-referential mental
processes during this sleep stage [3]. The ventral attention
network (VAN), also known as salience network, is
responsible for detecting salient stimuli and initiating
attentional processes, and it also shows interactions with
sleep. Studies have found that the VAN undergoes changes in
functional connectivity and activity across sleep stages. For
instance, a study revealed decreased VAN connectivity during
NREM sleep, suggesting a reduction in the detection of salient
stimuli and a shift toward more internally focused processes
during sleep [4]. Furthermore, the frontoparietal network
(FPN), associated with higher-order cognitive functions and
cognitive control, has implications for sleep and sleep
disorders. Disruptions in FPN connectivity have been
observed in sleep disorders such as insomnia. A study found
that individuals with chronic insomnia exhibited altered FPN
connectivity patterns during wakefulness, highlighting the
potential involvement of this network in sleep disturbances
and cognitive impairments associated with insomnia [5].
Moreover, recent studies have explored the interplay between
these networks and sleep disorders such as sleep apnea, such
as altered connectivity between the DMN and VAN in
individuals with obstructive sleep apnea, suggesting impaired
cognitive and attentional processes during wakefulness and
sleep in these individuals [6].
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Figure 1: Proposed workflow. The signals of the electrodes (either synthetic, real or noise only) are mapped to the source
space by solving the EEG inverse problem. The signals are averaged per Brodmann Area (BA) and then filtered for different
low and high frequency bands, extracting the low frequency phase and the high frequency amplitude. For each combination
of a low frequency and a high frequency the PAC strength is computed generating one comodulogram per BA. Based on the
generation of surrogate data, thresholds of significance are determined for each low-high frequency pair. The surviving pairs
are used to generate the significant PAC signals, one per BA. The covariance matrix is obtained for the data and for the noise
only signals. The biases of the model are removed by projecting the data covariance matrix to the space orthogonal to the
first noise eigenvector. The data convariance matrix without the noise bias is combined with the brain standard network
parcellation in the confirmatory factor analysis, that returns the relevance of each network in the processed signals.

Surrogate
data

Collectively, these recent findings highlight the significant
impact of the standard brain networks, including the DMN,
VAN, and SMN, on sleep architecture, sleep-related cognitive
processes, and sleep disorders. Understanding the dynamic
interactions between these networks during sleep can provide
insights into the underlying mechanisms of sleep-related
functions and disorders, potentially guiding the development
of targeted interventions for sleep-related cognitive
impairments and sleep disorders. However, analyzing brain
networks during sleep using fMRI has the practical difficulty
that fMRI is extremely noisy and uncomfortable, as well as
being highly expensive. Thus, there is a need for techniques
that can analyze these networks with less invasive
measurement technologies such as magnetoencephalography
(MEG) or electroencephalography (EEG).

MEG consists in measuring the subtle magnetic fields
generated by brain activity of large groups of synchronized,
localized and aligned neurons. This technique can capture the
brain dynamics more efficiently than fMRI but it is still
expensive and mostly capture activity that is not
perpendicularly aligned to the scalp cortex. EEG has also very
high temporal resolution and is much less expensive than
fMRI or MEG. It also measures the electromagnetic
phenomena produced by neuronal activation, but sensing the
electric potential on the scalp with a set or array of electrodes.
It has the disadvantage that the electric potential is highly
sensitive to the geometry and electrical conductivity of the
head tissues. In the context of sleep study, it has the advantage
of being relatively comfortable to wear allowing sleep data
acquisition in a context (a comfortable bed, silent

environment, horizontal position and with good movement
freedom) much more like natural sleep than fMRI or MEG.

Phase-amplitude coupling (PAC) is a neurophysiological
phenomenon that involves the coupling of different
frequencies of neural oscillations in the brain. Specifically, it
refers to the modulation of the amplitude of high-frequency
oscillations by the phase of low-frequency oscillations. PAC
has been widely studied as it reflects the dynamic interactions
between distinct brain regions and plays a crucial role in
various cognitive processes. One of the most relevant findings
using PAC is its involvement in memory and learning. For
instance, hippocampal-cortical PAC increased during
memory retrieval, suggesting that phase-amplitude coupling
might support memory consolidation and information transfer
between different brain regions [7]. Moreover, PAC has been
implicated in attention and perception. It has been observed
that PAC between theta and gamma oscillations is modulated
during attentional tasks, reflecting the coordinated
communication between brain areas involved in selective
attention [8]. This phenomenon highlights the role of PAC in
coordinating neural activity and enhancing information
processing during cognitive tasks. Furthermore, PAC
abnormalities have been linked to various neurological and
psychiatric disorders. For example, disruptions in PAC have
been reported in conditions such as epilepsy [9] and
schizophrenia [10]. These findings suggest that PAC may
serve as a potential biomarker for neurological and psychiatric
conditions, aiding in diagnosis and treatment.

In this work we present our own implementation of a
workflow for processing electroencephalography (EEG)
signals to determine the correlations of the phase-amplitude
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coupling (PAC) of the standard brain networks during a given
time-window. We validate this pipeline with synthetic signals.
The purpose of this study is to present the workflow, that will
be used in a next stage to process more than 20 subjects during
sleep to discover how the standard networks activate or
deactivate during the different sleep stages.

II. WORKFLOW

In this section we describe the proposed workflow, which
is mostly based on a previous study [11], but adapted to EEG
and modified where we found some issues. At the final step
we use confirmatory factor analysis (CFA) instead of
principal component analysis (PCA) to obtain the
predominant brain networks that explain the PAC data. Fig.
1 shows a block diagram of the entire workflow, which was
implemented in Python and is described in detail below.

A. Head Modeling

Based on structural magnetic resonance (MR) and
computed tomography images of two healthy adults (S1:
male, Caucasian, 28 years old and S2: female, Asian, 23 years
old) we built two realistic head models using BEL’s EMAD
toolbox [12]. The head is segmented into seven tissues (scalp,
skull, cerebrospinal fluid, eyeballs, gray matter, white matter,
and internal air) and we assigned to them literature
conductivity values (0.35, 0.01, 1.79, 1.55, 0.33, 0.25 and 0
S/m, respectively). EMAD was also used to parcellate the
cortical surface into 9600 oriented dipoles and to corregister
an EGI Geodesic Sensor net with 256 electrodes. The
electromagnetic problem was solved using BEL’s hexahedral
finite element method (FEM) solver HexaFEM, generating a
lead field matrix L with the resulting electric potential at each
electrode produced by each dipolar source.

B. Synthetic signal generation

We generated two synthetic PAC signals with two
different low and high frequencies, one with theta — low
gamma PAC and another with alpha — low gamma PAC. The
PAC signals were generated using the formula described in
[13]:

Xp, (t) = Kp sin(2nfyt), (1)
X, (t) = Ap, (O)sin(2mfyt), 2)
with

Afa(t) — Kfa (1_)() Sin(2ﬂ£pt—¢c)+x+1’ (3)

where X, (t) is the phase signal, X, (t) is the amplitude
signal, f,, is the phase low frequency, f; is the amplitude high
frequency, K, is the amplitude of X f (t), Ky, determines the
amplitude of Xy (t), (1 — x) with y € [0,1] is the coupling
strength, and ¢, is the coupling phase. Then, the PAC signal
at the source space is:

X(@) = X, () + Xy, () +e®), 4
where €(t) is the PAC noise term.

The chosen parameters for the VAN were f,, = 6Hz (theta
band), f, = 62Hz, Ky, = 10uV, Ky, = 2uV, x = 0.2; and
for the DMN were f, = 10Hz (alpha band), f; = 47Hz,
Ky = 9uV, K, =3ul, y = 0.2. Note that €(t) is a source

ofnoise that affects the original PAC signal, which we defined
as Gaussian noise with o = 0.001.

For each head model, the two PAC signals were applied to
4 arbitrarily selected dipoles, two at distant regions of the
VAN and two at distant regions of the DMN. We selected
dipoles with very similar Montreal Neurological Institute
(MNI) coordinates for the two subjects. The final MNI
coordinates (x,y,z) were:

e Subject S1, VAN (theta) source 1: -35, 6, 14

e Subject S1, VAN (theta) source 2: 64, -27, 30

e Subject S1, DMN (alpha) source 1: -50, -62, 29
e Subject S1, DMN (alpha) source 2: 4, 59, -2

e Subject S2, VAN (theta) source 1: -35,4,9

e Subject S2, VAN (theta) source 2: 63, -29, 25

e Subject S2, DMN (alpha) source 1: -52, -64, 29
e  Subject S2, DMN (alpha) source 2: 4, 62, -3

The synthetic EEG signals Y (t) at the sensors were
generated by multiplying the source PAC signals in (4) by the
leadfield of each selected dipole, as shown in (5):

Y(£) = 1(Pam)T QXY (t) + (P ™) T @XVan(t) +
Lrf™)TX ™ (t) + L(rf™)TRX ™™ (t) + N(©), (5)

where [(r) is the leadfield vector with the potential at all
electrodes produced by a dipolar source located at r, r* and
3t are the locations of selected sources 1 and 2 of network n,
® means the outer product, and N(t) is a second source of
noise at the sensors, with an SNR of 50dB in this work.

C. Source space mapping

The EEG data is mapped to the brain space to obtain a
signal per dipolar source. This inverse solution was estimated
using the classical standardized low-resolution brain
electromagnetic tomography algorithm (sLORETA) [14]
implemented in BEL’s Sourcerer Suite. sSLORETA is one of
the most popular inverse solvers due to its algorithmic
simplicity and unbiased nature [15]. The formulation is:

1T (LT +ar) "

—— () (6)
LT (LLT +al) "I(r)

where a is a hyperparameter, [ is the identity matrix and
s(r, t) is the source waveform estimate of dipole r at time t.
Formulation in (6) is repeated for each possible source of
activity. The hyperparameter was selected by visual
inspection of a few samples of the source reconstructions and
then it remained fixed for the rest of them (¢ = 0.01).

s(r,t) =

Source localizations were run for each subject and for each
dipole. To reduce the source space and make the whole
workflow computationally tractable, the mean waveform per
Brodmann Area (BA) was obtained by averaging the
individual waveforms of all dipoles of each BA. This
averaging was done considering the orientation of each dipole
because if dipoles are oriented in opposite directions, the
source waveforms are reflected and thus, a simple averaging
can lead to the suppression of the signals. At this point we
have 76 signals, one per BA.

D. Low and High frequency filtering.
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Each BA signal is filtered to obtain low and high frequency
signals. The bandpass pass filters for the low frequencies are
4th order Butterworth covering the theta band (5-8 Hz) and the
alpha band (8-12 Hz) with a 0.5 Hz step and 0.5 Hz of
bandwidth, giving a total of 15 low frequency bins. The band
pass filters for the high frequencies are also 4th order
Butterworth covering the low Gamma (40-80Hz) with a
logarithmic step (following [11]) and 30Hz of bandwidth. In
our work, the final number of bins were 25 for the low Gamma
band. The phases ¢fp (t) and the amplitudes ay (t) are

extracted from the low pass signals and the high pass signals
respectively, after building the complex envelope via Hilbert
Transform [16].

E. PAC signals and comodulograms

For each BA a comodulogram is generated by computing
the modulation index (MI) for each low and high frequency
pair of bins:

idg (O
1 ‘ZZ:lafa(t)e fp |

MI(fy. fa) = 7= (7

STo1an2(®)

where T is the number of time samples. The MI formula can
be read as the normalized module of the complex vector that
is generated by the sum of the complex PAC signal vectors
over the whole time window. Thus, if the low-frequency
phases and high-frequency amplitudes are coupled, the
vectors are mostly aligned and the resulting MI is be large.

A comodulogram shows the strength of the PAC for all
pairs of low frequency and high frequency bin combinations,
as seen in Fig. 1 top-right corner. A hypothesis test is required
to establish the significance of the MI. The MI statistical
distribution is needed though hard to derive. Thus, it is
suggested the use of surrogate data [17].

F. Surrogate data and thresholding

200 sets of surrogate data are generated by using the same
amplitudes of the data, but with random phases. The surrogate
comodulograms are used to create significance thresholds for
each low-high frequency bin pairs. In Florin et al, 2015 they
generate only one significance threshold for all frequency
pairs instead of one threshold per frequency pair [11]. This
results in the lower frequencies having more chances to
survive, due to the 1/f behavior of the brain spectrum, as
explained in Gohel et al 2016 [17]. The threshold for each
frequency pair was set as p = 0.05 before Bonferroni
correction.

The data comodulograms (one per BA) are thresholded
based on the surrogate data (see Fig. 1, right-bottom) and then,
the PAC signal for each BA with only the significant
information is rebuilt following:

PACg,(t) = Ses, 1,5 ar, (D" *P, ©)
where < f,, f; > are the surviving low-high frequency pairs.

The surrogate data generation is the most time-consuming
task because almost the whole workflow has to be repeated
200 times, although it can be parallelized. In an Intel(R)
Xeon(R) CPU E5-2603 v4 @ 1.70GHz with 6 cores and 132
GB of RAM the whole workflow with parallelization takes
around 2 hours.

G. Covariance matrix

At this point there is one PAC signal per BA. The sample
covariance matrix is computed to understand the networks of
the brain. However, this covariance matrix might include
spurious correlations given by the source localization process,
which is not 100% focused resulting in leakage (i.e., the
activity obtained on one dipole is not independent of the signal
of the neighbor dipole). To reduce this bias, a white Gaussian
noise (WGN) only signal at the sensors is generated and
processed following steps C to G. The result is a noise only
covariance matrix (see Fig. 1, bottom center). Then, the
principal mode of the noise matrix singular value
decomposition is removed from the signal covariance matrix
using orthogonal projection. Note that the noise matrix can
also change for a different realization. We made the noise data
length large enough (10 seconds), until we saw that it was
stable for different realizations. This is another improvement
we made over Florin et al 2015 workflow.

H. Brain parcellation into networks

The EMAD segmentation software provides the MNI
coordinates of each dipole. This information was used to map
each dipole to one of the seven functional brain networks of
the Yeo et al, 2011 atlas [18]: visual, somatomotor, dorsal
attention, ventral attention, limbic, frontoparietal and default
mode networks. These networks constitute an atlas that is very
popular and standard in fMRI data analysis.

1. Confirmatory factor analysis

We used the confirmatory factor analysis to see how much
these networks explain the PAC covariance matrix. CFA
decomposition is similar to PCA decomposition with the
difference that in CFA the modes are predefined (in this case
the Yeo et al 2011 networks) instead of being obtained as the
eigenvectors of the PCA decomposition. We followed a
standard CFA procedure that minimizes the maximum
likelihood equation [19]:

Fyr = InJA QAT + I — diag(A Q AT)| +
tr(RIAQAT + 1 —diag(AQAT))™) —In(R) —p (8)

where A is the matrix containing the predefined modes, i.e.,
the mapping between the BA parcellation and the standard
brain network parcellation, () is the unknown 7x7 diagonal
matrix with the weights of each network, I is the identity
matrix, R is the data covariance matrix with noise bias
removed, described in section II.G, and p is the number of
unknown variables (7 in this case).

III. EXAMPLES

In this section we show the results of processing synthetic
data using two different realistic head models. Fig. 2 shows
the results of the CFA, for both theta-gamma and alpha-
gamma PACs for subjects S1 and S2. It can be observed that
the VAN and DFM are the predominant modes, and that the
DFM is larger for the alpha band. Note that both modes are
also seen in the other band (VAN in alpha and DFM in theta).
In the discussion section we give a possible reason for this.

IV. DISCUSSION

A. Differences with respect to Florin et al 2015.

In the process of replicating Florin et al 2015 pipeline, we
found some issues that we think they can be improved. Here
we highlight the most important modifications we introduced
in our pipeline. First, the thresholds of significance were
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Figure 2: results of the confirmatory factor analysis for
subject S1 (top) and S2 (bottom). Each bar represents
phase-amplitude coupling activation of each network to
explain the observed data.

applied to the whole comodulograms (all frequencies), instead
of computing one threshold per low-high frequency pair, as
done in another study [17]. This results in a bias towards low
frequencies having more significance, which is seen in Fig. 2
from Florin et al., 2015. We replicated this effect by
processing only noise, where this bias was clearly seen.
Second, the surrogate data was computed using the phase of a
noise only signal but the amplitude of the data, instead of using
both the phase and amplitudes of noise only signals. The
approach we used preserves the power spectrum of the
original data [20]. One final relevant difference is that we used
confirmatory factor analysis instead of blind principal
component analysis. CFA is more suitable when the
projection vectors can be defined a-priori, as it occurs in this
case with the standard brain networks.

B. Results

Although the results are preliminary, there are some
interesting findings to describe. First, the networks are not
100% decoupled, even for synthetic data. One reason can be
the inherent spatial smoothing produced when solving the
inverse problem. However, this effect should be mostly
mitigated by the orthogonal to the noise space projection. We
also plan to use more spatially selective inverse solvers such
as beamforming [15] or multiple sparse priors [21]. Another
cause of this coupling is produced by the fact that the BA
parcellation of the brain is not aligned with the network
parcellation, meaning that some averaged signals per BA
belong to different networks.

Another finding is that the results change significantly
when a higher noise is used (results not shown). We found that
the effects of the noise added to the PAC signals is more
relevant than the noise added to the sensors. Finally, another
finding is that there is some cross-frequency crosstalk. This
means that a network with a simulated PAC for one low
frequency band (for instance theta) also appears as a strong

network in the other low frequency bands. Note for instance
in Fig. 2 that the DMN is as strong as the VAN for the Theta-
Gamma coupling, where the VAN should be stronger. The
expected reason of this effect is described in the following
section.

C. Limitations

One effect we found is that when considering only the
phase of a low frequency bin, if there is PAC with a high
frequency amplitude, there will necessarily be PAC with the
lower harmonics of the low frequency. For instance, if there is
strong PAC between the phase of 10Hz and the amplitude of
60Hz, there will also be strong PAC between the phase of SHz
and the amplitude of 60Hz. This effect was not mentioned in
the literature, and we will further study it. Another effect we
found is that the solutions are very sensitive to the noise. In
this work we had to lower the simulated noise levels
significantly to get robust solutions. This high sensitivity to
noise will be carefully analyzed before processing real data.
Finally, the CFA lacks of a “null-hypothesis network”. This
implies that even pure random noise will result in some
network activation. This issue is also present when doing PCA
as it is done in the previous PAC works, because even for
noise only signals (and even if projected to the orthogonal to
noise space), there will be some residual that will produce one
principal component. We think that this issue must be
carefully addressed in future works.

Overall, the workflow for processing PAC with brain
signals, either fMRI, MEG or EEG is complex and subject to
many sources of errors and it is still a developing technique,
without lack of controversies. For instance, Gohel et al 2016
criticized Florin et al 2015 by not using a correct significancy
thresholding [17]. Thus, Gohel et al 2016 tested different ways
of generating the surrogate data. Florin et al 2017 replied back
Gohel et al 2016 with a short note, defending themselves from
Gohel et al 2016 critiques [22]. Moreover, there is a very
recent work with the current pitfalls of the different stages of
the PAC analysis [20]. Each step of the workflow has different
variants and parameters that must be fine-tuned because most
of them are conceptually sound. We believe that more
simulations using different synthetic data types must still be
carried out to gain confidence in the workflow. However, we
consider this work as a relevant first milestone of a novel end-
to-end workflow that combines what we found as the best
solutions proposed in previous works.

V. CONCLUSIONS

We proposed an end-to-end PAC analysis workflow to
process EG data considering what we believe are the best
approaches described in previous works. We included the
novelty of using CFA instead of PCA, which we believe it is
amajor advantage of the proposed workflow. We tested it with
synthetic signals and the full workflow performed as
expected. Next steps will be fine-tuning it and improving its
robustness before processing real signals during sleep that we
already have collected for the two subjects of the head models
used here.
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