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Abstract— Human brain mapping or neuroimaging plays a 

pivotal role in understanding the intricacies of the human brain 

and paving the way for potential therapeutic interventions. 

Studying the standard brain networks, typically obtained from 

fMRI, provide valuable insights into the fundamental 

organization of the human brain. In this work we present a 

workflow for processing electroencephalography (EEG) signals 

to determine the correlations of the phase-amplitude coupling 

(PAC) of the standard brain networks during a given time-

window. We validate this pipeline with synthetic signals on 

realistic head models of two subjects with the ultimate goal of 

studying the changes of these networks during different sleep 

stages. The proposed workflow consists of: mapping the signals 

to the source space, averaging per Brodmann Area (BA), low 

and high pass filtering, computing the modulation index per 

low-high frequency pair, generating surrogate data to obtain 

significance thresholds, obtaining the significant PAC signals, 

computing the signal and noise covariance matrices, removing 

the model bias, and applying confirmatory factor analysis 

(CFA) to determine the relevance of each standard brain 

network. We included the novelty of using CFA instead of 

principal component analysis as done in previous studies. We 

tested the workflow with synthetic signals, and it performed as 

expected. Next steps will be fine-tuning it and improving its 

robustness before processing real signals during sleep that we 

already have collected for the two subjects of the head models 

used here. 

Keywords—brain networks, phase amplitude coupling, 

confirmatory factor analysis, electroencephalography inverse 

problem. 

I. INTRODUCTION 

Human brain mapping or neuroimaging plays a pivotal 
role in understanding the intricacies of the human brain and 
unlocking its mysteries. The motivation behind this field 
stems from the fundamental desire to comprehend the 
complex processes underlying cognition, perception, emotion, 
and behavior, thereby advancing our knowledge of human 
nature and paving the way for potential therapeutic 
interventions. With the synergic use of modalities such as 
functional magnetic resonance imaging (fMRI) or diffusion 
tensor imaging (DTI), researchers can identify brain regions 
involved in memory, attention, language, and decision-
making. For example, a study used fMRI to investigate the 
neural mechanisms underlying episodic memory retrieval, 
shedding light on the interplay between different brain regions 
during this process [1]. In another study, diffusion tensor 

imaging (DTI) was employed to reveal disrupted white matter 
connectivity in patients with schizophrenia, offering insights 
into the underlying neural pathology [2]. 

 Studying the standard brain networks, such as the default 
mode network (DMN), the attention networks or the 
somatomotor network (SMN) (also known as central 
executive network), holds immense relevance and motivation 
in the field of neuroscience. These networks, typically 
obtained from fMRI, provide valuable insights into the 
fundamental organization of the human brain and are crucial 
for understanding various cognitive processes and their 
dysregulation in neurological and psychiatric disorders. 
Recent findings have shed light on the impact of the standard 
brain networks, on sleep and its associated processes. These 
networks play crucial roles in regulating sleep architecture, 
sleep-related cognitive processes, and sleep disorders. 
Research has shown that the activity and connectivity within 
the DMN are altered during different stages of sleep, including 
rapid eye movement (REM) sleep and non-rapid eye 
movement (NREM) sleep. For instance, a study demonstrated 
increased DMN connectivity during REM sleep, suggesting a 
potential role in dream generation and self-referential mental 
processes during this sleep stage [3]. The ventral attention 
network (VAN), also known as salience network, is 
responsible for detecting salient stimuli and initiating 
attentional processes, and it also shows interactions with 
sleep. Studies have found that the VAN undergoes changes in 
functional connectivity and activity across sleep stages. For 
instance, a study revealed decreased VAN connectivity during 
NREM sleep, suggesting a reduction in the detection of salient 
stimuli and a shift toward more internally focused processes 
during sleep [4]. Furthermore, the frontoparietal network 
(FPN), associated with higher-order cognitive functions and 
cognitive control, has implications for sleep and sleep 
disorders. Disruptions in FPN connectivity have been 
observed in sleep disorders such as insomnia. A study found 
that individuals with chronic insomnia exhibited altered FPN 
connectivity patterns during wakefulness, highlighting the 
potential involvement of this network in sleep disturbances 
and cognitive impairments associated with insomnia [5]. 
Moreover, recent studies have explored the interplay between 
these networks and sleep disorders such as sleep apnea, such 
as altered connectivity between the DMN and VAN in 
individuals with obstructive sleep apnea, suggesting impaired 
cognitive and attentional processes during wakefulness and 
sleep in these individuals [6]. 
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Collectively, these recent findings highlight the significant 
impact of the standard brain networks, including the DMN, 
VAN, and SMN, on sleep architecture, sleep-related cognitive 
processes, and sleep disorders. Understanding the dynamic 
interactions between these networks during sleep can provide 
insights into the underlying mechanisms of sleep-related 
functions and disorders, potentially guiding the development 
of targeted interventions for sleep-related cognitive 
impairments and sleep disorders. However, analyzing brain 
networks during sleep using fMRI has the practical difficulty 
that fMRI is extremely noisy and uncomfortable, as well as 
being highly expensive. Thus, there is a need for techniques 
that can analyze these networks with less invasive 
measurement technologies such as magnetoencephalography 
(MEG) or electroencephalography (EEG). 

MEG consists in measuring the subtle magnetic fields 
generated by brain activity of large groups of synchronized, 
localized and aligned neurons. This technique can capture the 
brain dynamics more efficiently than fMRI but it is still 
expensive and mostly capture activity that is not 
perpendicularly aligned to the scalp cortex. EEG has also very 
high temporal resolution and is much less expensive than 
fMRI or MEG. It also measures the electromagnetic 
phenomena produced by neuronal activation, but sensing the 
electric potential on the scalp with a set or array of electrodes. 
It has the disadvantage that the electric potential is highly 
sensitive to the geometry and electrical conductivity of the 
head tissues. In the context of sleep study, it has the advantage 
of being relatively comfortable to wear allowing sleep data 
acquisition in a context (a comfortable bed, silent 

environment, horizontal position and with good movement 
freedom) much more like natural sleep than fMRI or MEG.   

Phase-amplitude coupling (PAC) is a neurophysiological 
phenomenon that involves the coupling of different 
frequencies of neural oscillations in the brain. Specifically, it 
refers to the modulation of the amplitude of high-frequency 
oscillations by the phase of low-frequency oscillations. PAC 
has been widely studied as it reflects the dynamic interactions 
between distinct brain regions and plays a crucial role in 
various cognitive processes. One of the most relevant findings 
using PAC is its involvement in memory and learning. For 
instance, hippocampal-cortical PAC increased during 
memory retrieval, suggesting that phase-amplitude coupling 
might support memory consolidation and information transfer 
between different brain regions [7]. Moreover, PAC has been 
implicated in attention and perception. It has been observed 
that PAC between theta and gamma oscillations is modulated 
during attentional tasks, reflecting the coordinated 
communication between brain areas involved in selective 
attention [8]. This phenomenon highlights the role of PAC in 
coordinating neural activity and enhancing information 
processing during cognitive tasks. Furthermore, PAC 
abnormalities have been linked to various neurological and 
psychiatric disorders. For example, disruptions in PAC have 
been reported in conditions such as epilepsy [9] and 
schizophrenia [10]. These findings suggest that PAC may 
serve as a potential biomarker for neurological and psychiatric 
conditions, aiding in diagnosis and treatment. 

In this work we present our own implementation of a 
workflow for processing electroencephalography (EEG) 
signals to determine the correlations of the phase-amplitude 

 

Figure 1: Proposed workflow. The signals of the electrodes (either synthetic, real or noise only) are mapped to the source 
space by solving the EEG inverse problem. The signals are averaged per Brodmann Area (BA) and then filtered for different 
low and high frequency bands, extracting the low frequency phase and the high frequency amplitude. For each combination 
of a low frequency and a high frequency the PAC strength is computed generating one comodulogram per BA. Based on the 
generation of surrogate data, thresholds of significance are determined for each low-high frequency pair. The surviving pairs 
are used to generate the significant PAC signals, one per BA. The covariance matrix is obtained for the data and for the noise 
only signals. The biases of the model are removed by projecting the data covariance matrix to the space orthogonal to the 
first noise eigenvector. The data convariance matrix without the noise bias is combined with the brain standard network 
parcellation in the confirmatory factor analysis, that returns the relevance of each network in the processed signals. 
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coupling (PAC) of the standard brain networks during a given 
time-window. We validate this pipeline with synthetic signals. 
The purpose of this study is to present the workflow, that will 
be used in a next stage to process more than 20 subjects during 
sleep to discover how the standard networks activate or 
deactivate during the different sleep stages. 

II. WORKFLOW 

In this section we describe the proposed workflow, which 

is mostly based on a previous study [11], but adapted to EEG 

and modified where we found some issues. At the final step 

we use confirmatory factor analysis (CFA) instead of 

principal component analysis (PCA) to obtain the 

predominant brain networks that explain the PAC data. Fig. 

1 shows a block diagram of the entire workflow, which was 

implemented in Python and is described in detail below. 

A. Head Modeling 

 Based on structural magnetic resonance (MR) and 
computed tomography images of two healthy adults (S1: 
male, Caucasian, 28 years old and S2: female, Asian, 23 years 
old) we built two realistic head models using BEL’s EMAD 
toolbox [12]. The head is segmented into seven tissues (scalp, 
skull, cerebrospinal fluid, eyeballs, gray matter, white matter, 
and internal air) and we assigned to them literature 
conductivity values (0.35, 0.01, 1.79, 1.55, 0.33, 0.25 and 0 
S/m, respectively). EMAD was also used to parcellate the 
cortical surface into 9600 oriented dipoles and to corregister 
an EGI Geodesic Sensor net with 256 electrodes. The 
electromagnetic problem was solved using BEL’s hexahedral 
finite element method (FEM) solver HexaFEM, generating a 
lead field matrix 𝐿 with the resulting electric potential at each 
electrode produced by each dipolar source. 

B. Synthetic signal generation 

We generated two synthetic PAC signals with two 
different low and high frequencies, one with theta – low 
gamma PAC and another with alpha – low gamma PAC. The 
PAC signals were generated using the formula described in 
[13]: 

𝑋𝑓𝑝
(𝑡) =  𝐾𝑓𝑝

sin(2𝜋𝑓𝑝𝑡),   (1) 

𝑋𝑓𝑎
(𝑡) =  𝐴𝑓𝑎

(𝑡)𝑠𝑖𝑛(2𝜋𝑓𝑎𝑡),   (2) 

with 

𝐴𝑓𝑎
(𝑡) = 𝐾𝑓𝑎

(1−𝜒) 𝑠𝑖𝑛(2𝜋𝑓𝑝𝑡−𝜙𝑐)+𝜒+1

2
,   (3) 

where 𝑋𝑓𝑝
(𝑡)  is the phase signal, 𝑋𝑓𝑎

(𝑡)  is the amplitude 

signal, 𝑓𝑝 is the phase low frequency, 𝑓𝑎 is the amplitude high 

frequency, 𝐾𝑓𝑝
 is the amplitude of 𝑋𝑓𝑝

(𝑡), 𝐾𝑓𝑎
determines the 

amplitude of 𝑋𝑓𝑎
(𝑡), (1 − 𝜒) with 𝜒 ∈ [0,1] is the coupling 

strength, and 𝜙𝑐 is the coupling phase. Then, the PAC signal 
at the source space is: 

𝑋(𝑡) =  𝑋𝑓𝑎
(𝑡) + 𝑋𝑓𝑝

(𝑡) + 𝜖(𝑡),  (4) 

where 𝜖(𝑡) is the PAC noise term.   

The chosen parameters for the VAN were 𝑓𝑝 = 6𝐻𝑧 (theta 

band), 𝑓𝑎 = 62𝐻𝑧 , 𝐾𝑓𝑝
= 10𝑢𝑉 , 𝐾𝑓𝑎

= 2𝑢𝑉 , 𝜒 =  0.2; and 

for the DMN were 𝑓𝑝 = 10𝐻𝑧  (alpha band), 𝑓𝑎 = 47𝐻𝑧 , 

𝐾𝑓𝑝
= 9𝑢𝑉, 𝐾𝑓𝑎

= 3𝑢𝑉, 𝜒 =  0.2. Note that 𝜖(𝑡) is a source 

of noise that affects the original PAC signal, which we defined 
as Gaussian noise with 𝜎 = 0.001. 

For each head model, the two PAC signals were applied to 
4 arbitrarily selected dipoles, two at distant regions of the 
VAN and two at distant regions of the DMN. We selected 
dipoles with very similar Montreal Neurological Institute 
(MNI) coordinates for the two subjects. The final MNI 
coordinates (x,y,z) were: 

• Subject S1, VAN (theta) source 1: -35, 6, 14 

• Subject S1, VAN (theta) source 2: 64, -27, 30 

• Subject S1, DMN (alpha) source 1: -50, -62, 29 

• Subject S1, DMN (alpha) source 2: 4, 59, -2 

• Subject S2, VAN (theta) source 1: -35, 4, 9 

• Subject S2, VAN (theta) source 2: 63, -29, 25 

• Subject S2, DMN (alpha) source 1: -52, -64, 29 

• Subject S2, DMN (alpha) source 2: 4, 62, -3 

The synthetic EEG signals 𝑌(𝑡)  at the sensors were 
generated by multiplying the source PAC signals in (4) by the 
leadfield of each selected dipole, as shown in (5): 

𝑌(𝑡) = 𝑙(𝑟1
𝑣𝑎𝑛)𝑇⨂𝑋𝑣𝑎𝑛(𝑡) + 𝑙(𝑟2

𝑣𝑎𝑛)𝑇⨂𝑋𝑣𝑎𝑛(𝑡) +
𝑙(𝑟1

𝑑𝑚𝑛)𝑇⨂𝑋𝑑𝑚𝑛(𝑡) + 𝑙(𝑟2
𝑑𝑚𝑛)𝑇⨂𝑋𝑑𝑚𝑛(𝑡) + 𝑁(𝑡), (5) 

where 𝑙(𝑟)  is the leadfield vector with the potential at all 
electrodes produced by a dipolar source located at 𝑟,  𝑟1

𝑛 and 
𝑟2

𝑛 are the locations of selected sources 1 and 2 of network 𝑛, 
⨂ means the outer product, and 𝑁(𝑡) is a second source of 
noise at the sensors, with an SNR of 50dB in this work. 

C. Source space mapping 

The EEG data is mapped to the brain space to obtain a 
signal per dipolar source. This inverse solution was estimated 
using the classical standardized low-resolution brain 
electromagnetic tomography algorithm (sLORETA) [14] 
implemented in BEL’s Sourcerer Suite. sLORETA is one of 
the most popular inverse solvers due to its algorithmic 
simplicity and unbiased nature [15]. The formulation is: 

𝑠(𝑟, 𝑡) =
𝑙(𝑟)𝑇 (𝐿𝐿𝑇+𝛼𝐼)

−1

√𝑙(𝑟)𝑇(𝐿𝐿𝑇+𝛼𝐼)
−1

𝑙(𝑟)

 𝑌(𝑡)  (6) 

where 𝛼  is a hyperparameter, 𝐼  is the identity matrix and 
𝑠(𝑟, 𝑡) is the source waveform estimate of dipole 𝑟 at time 𝑡. 
Formulation in (6) is repeated for each possible source of 
activity. The hyperparameter was selected by visual 
inspection of a few samples of the source reconstructions and 
then it remained fixed for the rest of them (𝛼 =  0.01). 

Source localizations were run for each subject and for each 
dipole. To reduce the source space and make the whole 
workflow computationally tractable, the mean waveform per 
Brodmann Area (BA) was obtained by averaging the 
individual waveforms of all dipoles of each BA. This 
averaging was done considering the orientation of each dipole 
because if dipoles are oriented in opposite directions, the 
source waveforms are reflected and thus, a simple averaging 
can lead to the suppression of the signals. At this point we 
have 76 signals, one per BA.  

D. Low and High frequency filtering. 
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Each BA signal is filtered to obtain low and high frequency 

signals. The bandpass pass filters for the low frequencies are 

4th order Butterworth covering the theta band (5-8 Hz) and the 

alpha band (8-12 Hz) with a 0.5 Hz step and 0.5 Hz of 

bandwidth, giving a total of 15 low frequency bins. The band 

pass filters for the high frequencies are also 4th order 

Butterworth covering the low Gamma (40-80Hz) with a 

logarithmic step (following [11]) and 30Hz of bandwidth. In 

our work, the final number of bins were 25 for the low Gamma 

band. The phases 𝜙𝑓𝑝
(𝑡)  and the amplitudes 𝑎𝑓𝑎

(𝑡)  are 

extracted from the low pass signals and the high pass signals 

respectively, after building the complex envelope via Hilbert 

Transform [16]. 

E. PAC signals and comodulograms 

For each BA a comodulogram is generated by computing 

the modulation index (MI) for each low and high frequency 

pair of bins: 

𝑀𝐼(𝑓𝑝, 𝑓𝑎) =
1

√𝑇

|∑ afa
(t)𝑒

𝑖 ϕfp
(t)𝑇

𝑡=1 |

√∑ afa
2(t)𝑇

𝑡=1

,  (7) 

where 𝑇 is the number of time samples. The MI formula can 

be read as the normalized module of the complex vector that 

is generated by the sum of the complex PAC signal vectors 

over the whole time window. Thus, if the low-frequency 

phases and high-frequency amplitudes are coupled, the 

vectors are mostly aligned and the resulting MI is be large.  

A comodulogram shows the strength of the PAC for all 

pairs of low frequency and high frequency bin combinations, 

as seen in Fig. 1 top-right corner. A hypothesis test is required 

to establish the significance of the MI. The MI statistical 

distribution is needed though hard to derive. Thus, it is 

suggested the use of surrogate data [17]. 

F. Surrogate data and thresholding 

200 sets of surrogate data are generated by using the same 
amplitudes of the data, but with random phases. The surrogate 
comodulograms are used to create significance thresholds for 
each low-high frequency bin pairs. In Florin et al, 2015 they 
generate only one significance threshold for all frequency 
pairs instead of one threshold per frequency pair [11]. This 
results in the lower frequencies having more chances to 
survive, due to the 1/f behavior of the brain spectrum, as 
explained in Gohel et al 2016 [17]. The threshold for each 
frequency pair was set as p = 0.05 before Bonferroni 
correction.  

The data comodulograms (one per BA) are thresholded 
based on the surrogate data (see Fig. 1, right-bottom) and then, 
the PAC signal for each BA with only the significant 
information is rebuilt following: 

𝑃𝐴𝐶𝐵𝐴(𝑡) = ∑ afa
(t)𝑒

𝑖 ϕfp
(t)

<𝑓𝑝,fa> ,  (8) 

where < 𝑓𝑝, fa > are the surviving low-high frequency pairs. 

The surrogate data generation is the most time-consuming 
task because almost the whole workflow has to be repeated 
200 times, although it can be parallelized. In an Intel(R) 
Xeon(R) CPU E5-2603 v4 @ 1.70GHz with 6 cores and 132 
GB of RAM the whole workflow with parallelization takes 
around 2 hours.  

G. Covariance matrix  

At this point there is one PAC signal per BA. The sample 
covariance matrix is computed to understand the networks of 
the brain. However, this covariance matrix might include 
spurious correlations given by the source localization process, 
which is not 100% focused resulting in leakage (i.e., the 
activity obtained on one dipole is not independent of the signal 
of the neighbor dipole). To reduce this bias, a white Gaussian 
noise (WGN) only signal at the sensors is generated and 
processed following steps C to G. The result is a noise only 
covariance matrix (see Fig. 1, bottom center). Then, the 
principal mode of the noise matrix singular value 
decomposition is removed from the signal covariance matrix 
using orthogonal projection. Note that the noise matrix can 
also change for a different realization. We made the noise data 
length large enough (10 seconds), until we saw that it was 
stable for different realizations. This is another improvement 
we made over Florin et al 2015 workflow. 

H. Brain parcellation into networks 

The EMAD segmentation software provides the MNI 
coordinates of each dipole. This information was used to map 
each dipole to one of the seven functional brain networks of 
the Yeo et al, 2011 atlas [18]: visual, somatomotor, dorsal 
attention, ventral attention, limbic, frontoparietal and default 
mode networks. These networks constitute an atlas that is very 
popular and standard in fMRI data analysis.  

I. Confirmatory factor analysis 

We used the confirmatory factor analysis to see how much 
these networks explain the PAC covariance matrix. CFA 
decomposition is similar to PCA decomposition with the 
difference that in CFA the modes are predefined (in this case 
the Yeo et al 2011 networks) instead of being obtained as the 
eigenvectors of the PCA decomposition. We followed a 
standard CFA procedure that minimizes the maximum 
likelihood equation [19]: 

𝐹𝑀𝐿 = ln|Λ Ω ΛT + 𝐼 − 𝑑𝑖𝑎𝑔(Λ Ω Λ𝑇)| +
𝑡𝑟(𝑅(Λ Ω Λ𝑇 + 𝐼 − 𝑑𝑖𝑎𝑔(Λ Ω Λ𝑇  ) )−1) − 𝑙𝑛(𝑅) − 𝑝 (8) 

where Λ is the matrix containing the predefined modes, i.e., 
the mapping between the BA parcellation and the standard 
brain network parcellation, Ω is the unknown 7x7 diagonal 
matrix with the weights of each network, 𝐼  is the identity 
matrix, R is the data covariance matrix with noise bias 
removed, described in section II.G, and 𝑝 is the number of 
unknown variables (7 in this case). 

III. EXAMPLES 

In this section we show the results of processing synthetic 
data using two different realistic head models. Fig. 2 shows 
the results of the CFA, for both theta-gamma and alpha-
gamma PACs for subjects S1 and S2. It can be observed that 
the VAN and DFM are the predominant modes, and that the 
DFM is larger for the alpha band. Note that both modes are 
also seen in the other band (VAN in alpha and DFM in theta). 
In the discussion section we give a possible reason for this. 

IV. DISCUSSION 

A. Differences with respect to Florin et al 2015. 

In the process of replicating Florin et al 2015 pipeline, we 
found some issues that we think they can be improved. Here 
we highlight the most important modifications we introduced 
in our pipeline. First, the thresholds of significance were 
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applied to the whole comodulograms (all frequencies), instead 
of computing one threshold per low-high frequency pair, as 
done in another study [17]. This results in a bias towards low 
frequencies having more significance, which is seen in Fig. 2 
from Florin et al., 2015. We replicated this effect by 
processing only noise, where this bias was clearly seen. 
Second, the surrogate data was computed using the phase of a 
noise only signal but the amplitude of the data, instead of using 
both the phase and amplitudes of noise only signals. The 
approach we used preserves the power spectrum of the 
original data [20]. One final relevant difference is that we used 
confirmatory factor analysis instead of blind principal 
component analysis. CFA is more suitable when the 
projection vectors can be defined a-priori, as it occurs in this 
case with the standard brain networks. 

B. Results 

Although the results are preliminary, there are some 
interesting findings to describe. First, the networks are not 
100% decoupled, even for synthetic data. One reason can be 
the inherent spatial smoothing produced when solving the 
inverse problem. However, this effect should be mostly 
mitigated by the orthogonal to the noise space projection. We 
also plan to use more spatially selective inverse solvers such 
as beamforming [15] or multiple sparse priors [21]. Another 
cause of this coupling is produced by the fact that the BA 
parcellation of the brain is not aligned with the network 
parcellation, meaning that some averaged signals per BA 
belong to different networks.  

Another finding is that the results change significantly 
when a higher noise is used (results not shown). We found that 
the effects of the noise added to the PAC signals is more 
relevant than the noise added to the sensors. Finally, another 
finding is that there is some cross-frequency crosstalk. This 
means that a network with a simulated PAC for one low 
frequency band (for instance theta) also appears as a strong 

network in the other low frequency bands. Note for instance 
in Fig. 2 that the DMN is as strong as the VAN for the Theta-
Gamma coupling, where the VAN should be stronger. The 
expected reason of this effect is described in the following 
section.  

C. Limitations 

One effect we found is that when considering only the 
phase of a low frequency bin, if there is PAC with a high 
frequency amplitude, there will necessarily be PAC with the 
lower harmonics of the low frequency. For instance, if there is 
strong PAC between the phase of 10Hz and the amplitude of 
60Hz, there will also be strong PAC between the phase of 5Hz 
and the amplitude of 60Hz. This effect was not mentioned in 
the literature, and we will further study it. Another effect we 
found is that the solutions are very sensitive to the noise. In 
this work we had to lower the simulated noise levels 
significantly to get robust solutions. This high sensitivity to 
noise will be carefully analyzed before processing real data. 
Finally, the CFA lacks of a “null-hypothesis network”. This 
implies that even pure random noise will result in some 
network activation. This issue is also present when doing PCA 
as it is done in the previous PAC works, because even for 
noise only signals (and even if projected to the orthogonal to 
noise space), there will be some residual that will produce one 
principal component. We think that this issue must be 
carefully addressed in future works.  

Overall, the workflow for processing PAC with brain 
signals, either fMRI, MEG or EEG is complex and subject to 
many sources of errors and it is still a developing technique, 
without lack of controversies. For instance, Gohel et al 2016 
criticized Florin et al 2015 by not using a correct significancy 
thresholding [17]. Thus, Gohel et al 2016 tested different ways 
of generating the surrogate data. Florin et al 2017 replied back 
Gohel et al 2016 with a short note, defending themselves from 
Gohel et al 2016 critiques [22]. Moreover, there is a very 
recent work with the current pitfalls of the different stages of 
the PAC analysis [20]. Each step of the workflow has different 
variants and parameters that must be fine-tuned because most 
of them are conceptually sound. We believe that more 
simulations using different synthetic data types must still be 
carried out to gain confidence in the workflow. However, we 
consider this work as a relevant first milestone of a novel end-
to-end workflow that combines what we found as the best 
solutions proposed in previous works.  

V. CONCLUSIONS 

We proposed an end-to-end PAC analysis workflow to 
process EG data considering what we believe are the best 
approaches described in previous works. We included the 
novelty of using CFA instead of PCA, which we believe it is 
a major advantage of the proposed workflow. We tested it with 
synthetic signals and the full workflow performed as 
expected. Next steps will be fine-tuning it and improving its 
robustness before processing real signals during sleep that we 
already have collected for the two subjects of the head models 
used here.  
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Figure 2: results of the confirmatory factor analysis for 
subject S1 (top) and S2 (bottom). Each bar represents 
phase-amplitude coupling activation of each network to 
explain the observed data. 
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